#!/usr/bin/env python3
# flake8: noqa E501 (line length)
import pandas as pd
from fuzzywuzzy import fuzz
import sys
import json
import unicodedata
import re
import config
pd.options.mode.chained_assignment = None
# Check if an element of the list is in affiliation
def is_hospital_affiliation(affiliation):
affiliation_lower = affiliation.lower()
for aff in config.acronyms:
if aff in affiliation_lower:
return True
return False
# correction of the cities : remove the department numbers
def remove_department_numbers(city_name):
# Grenoble - 38 => Grenoble
sep = " -"
stripped = city_name.split(sep, 1)[0]
stripped = stripped.replace("-", " ")
return stripped
# correction of the cities: convert acronyms
def convert_acronyms(city_name):
stripped = city_name.replace("Saint", "St")
stripped = stripped.replace("Mont", "Mt")
return stripped
# correction of the cities : remove accents
def remove_accents(city_name):
normalized_text = unicodedata.normalize("NFD", city_name)
text_with_no_accent = re.sub("[\u0300-\u036f]", "", normalized_text)
return text_with_no_accent
def is_city_in_affiliation(city, affiliation):
return city.lower() in affiliation.lower()
def affiliations_match_ratio(first_affiliation, second_affiliation):
return fuzz.ratio(first_affiliation, second_affiliation)
def get_corresponding_hospital_from_affiliation(affiliation):
affiliations_dataframe = pd.read_csv("hospital_affiliations.csv", sep=";")
acronyms = config.acronyms
hospital = "N.C"
affiliation = affiliation.lower()
for acronym in acronyms:
if acronym not in affiliation:
continue
# standarize original dataframe
affiliations_dataframe["contains_acronyms"] = affiliations_dataframe["Affiliation"].apply(is_hospital_affiliation)
affiliations_dataframe["standardized_city"] = affiliations_dataframe["Ville_canonique_Dpt"].apply(remove_department_numbers).apply(convert_acronyms).apply(remove_accents)
acronyms_dataframe = affiliations_dataframe[affiliations_dataframe["contains_acronyms"] == True] # noqa: E712
if len(acronyms_dataframe) == 0: # noqa: E712
continue
# create new dataframe only with affiliations that contain acronyms
acronyms_dataframe["city_in_affiliations"] = acronyms_dataframe["standardized_city"].apply(is_city_in_affiliation, affiliation=affiliation)
ancronyms_cities_dataframe = acronyms_dataframe[acronyms_dataframe["city_in_affiliations"] == True] # noqa: E712
if len(ancronyms_cities_dataframe) == 0:
continue
# create new dataframe only with affiliations that contain acronyms and cities
ancronyms_cities_dataframe["ratio"] = ancronyms_cities_dataframe["Affiliation"].apply(affiliations_match_ratio, second_affiliation=affiliation)
hospital = ancronyms_cities_dataframe["Orga NonCnrs Acorriger"][ancronyms_cities_dataframe["ratio"].idxmax()]
break
return hospital
def main():
for line in sys.stdin:
data = json.loads(line)
texte = data["value"]
data["value"] = get_corresponding_hospital_from_affiliation(texte)
sys.stdout.write(json.dumps(data))
sys.stdout.write("\n")
if __name__ == "__main__":
main()